Fragility of Properness

Yasuo YOSHINOBU

Nagoya University

RIMS Set Theory Meeting November 18, 2020

In this short talk we show just a single theorem.

Theorem

Whenever $V \subsetneq W$ are models of ZFC with the same ordinals. Then there exists a poset \mathbb{P} in V such that \mathbb{P} is proper in V but improper in W. Karagila once asked the following question in his website, where he lists some open problems in set theory.

Problem (Karagila [1], Problem 3(b))

Is there a cardinal κ such that every proper poset remains proper after any $\kappa\text{-closed}$ forcing?

This problem was solved negatively by the speaker [2] (2018). After this, Karagila added another problem somewhat with an 'opposite' tone.

Problem (Karagila [1], Problem 5)

For any nontrivial poset \mathbb{P} , is there a proper poset \mathbb{Q} whose properness is destroyed after forcing over \mathbb{P} ?

Our theorem solves this problem affirmatively. The background of these questions is explained more in detail in Karagila [3].

Proof of the theorem

First let:

- $\kappa :=$ the least ordinal s.t. $\kappa \operatorname{Ord} \cap (W \setminus V) \neq \emptyset$.
- $\lambda :=$ the least ordinal s.t. ${}^{\kappa}\lambda \cap (W \setminus V) \neq \emptyset$.

Then we have:

 κ is a regular infinite cardinal both in V and W.

 λ is a cardinal in V with $\lambda \geq 2$.

We will prove the theorem by two cases.

<u>Case 1</u> $\kappa > \omega$: We use a variation of Shelah's example ([4], XVII Observation 2.12, p.826) of two proper posets whose product is improper.

<u>Case 2</u> $\kappa = \omega$: We generalize an argument by Shelah (introduced by Goldstern [5]) to prove some σ -closed forcing turns improper by adding a Cohen real.

<u>Remark</u> These techniques have been mentioned in Karagila [3] as 'examples'.

Note that $\omega_1^V = \omega_1^W$. (So we will write them as ω_1 .) Work in V.

Let T := the tree ${}^{<\kappa}\lambda$ (ordered by end-extension).

There are $\theta := \lambda^{\kappa}$ branches through T.

Note that by the choice of κ and λ , T has a branch in $W \setminus V$.

Let
$$\mathbb{P} := \operatorname{Add}(\omega)$$
 and $\dot{\mathbb{Q}} := \operatorname{Col}(\omega_1, \theta)^{V^{\mathbb{P}}}$.

 $\mathbb{P} * \hat{\mathbb{Q}}$ adds no new branch through T by the following theorem, and thus in $V^{\mathbb{P} * \hat{\mathbb{Q}}}$ there are ω_1 branches through T.

Theorem (Mitchell [6])

Let $cf\gamma > \omega$. Then forcing with $Add(\omega) * (\sigma$ -closed) adds no new sequence s of ordinals of length γ such that every initial segment of s is in the ground model.

Case 1: $\kappa > \omega$ (2/3)

Now work in $V^{\mathbb{P}*\mathbb{Q}}$. We can pick a club subset $\dot{C} \subseteq \kappa$ of order type ω_1 . Let $T \upharpoonright \dot{C} := \{s \in T \mid \text{length}(s) \in \dot{C}\}$. Note that branches through $T \upharpoonright \dot{C}$ are essentially those through T. So $T \upharpoonright \dot{C}$ is a tree of size and height ω_1 with ω_1 branches. Now let \mathbb{R} be as in the following theorem.

Theorem (Baumgartner [7] §7)

Let \mathcal{T} be a tree of size and height ω_1 with at most ω_1 branches. Then there is a c.c.c. poset \mathbb{R} which specializes \mathcal{T} , that is,

" \mathcal{T} is a countable union of subsets, each of which is $\Vdash_{\mathbb{R}}$ a union of mutually incompatible tails of branches in the ground model."

Note that (in $V^{\mathbb{P}*\dot{\mathbb{Q}}}$) forcing with $\dot{\mathbb{R}}$ adds no new branches through $T \upharpoonright \dot{C}$.

Nor does any further extension, unless it collapses ω_1 .

Now in V let $\tilde{\mathbb{P}} := \mathbb{P} * \dot{\mathbb{Q}} * \dot{\mathbb{R}}$. $\tilde{\mathbb{P}}$ is of the form (c.c.c.)*(σ -closed)*(c.c.c.) and thus proper in V. Let G be any $\tilde{\mathbb{P}}$ -generic over W (thus over V). Then W[G] is an extension of V[G] and contains a branch through $T \upharpoonright \dot{C}$ which is not in V (and thus not in V[G]). Therefore ω_1 is collapsed in W[G], and therefore $\tilde{\mathbb{P}}$ is not proper. In this case, we can prove the following:

Lemma

There exists $\mu > \omega_1^W$ regular in W such that $(\mathcal{P}_{\omega_1}\mu)^W \setminus V$ is stationary in W.

(Proof of Lemma) If $\lambda = 2$ (i.e. W has a real not in V), the conclusion holds for $\mu = \omega_2^W$, as proved by Gitik ([8], Theorem 1.1).

Otherwise, let $f \in {}^{\omega}\lambda \cap (W \setminus V)$. Since $W \cap {}^{\omega}2 = V \cap {}^{\omega}2$, no countable set in V contains $\operatorname{ran}(f)$. Now let μ be a W-regular cardinal such that $\mu \ge \omega_2^W$, λ . Then

$${x \in (\mathcal{P}_{\omega_1}\mu)^W \mid \operatorname{ran}(f) \subseteq x} \subseteq (\mathcal{P}_{\omega_1}\mu)^W \setminus V$$

contains a club subset of $(\mathcal{P}_{\omega_1}\mu)^W$.

Let μ be as in Lemma and let $\mathbb{P} := \operatorname{Col}(\omega_1, \mu)^V$. \mathbb{P} is proper in V. Now work in W. Let θ be a sufficiently large regular cardinal. Then

$$Y = \{ M \prec H_{\theta} \mid \mathbb{P} \in M, |M| = \omega, M \cap \mu \notin V \}$$

is stationary in $\mathcal{P}_{\omega_1}H_{\theta}$. For each $M \in Y$, $M \cap \omega_1$ is an ordinal and so is $\delta := M \cap \omega_1^V$. If $p \in \mathbb{P}$ were (M, \mathbb{P}) -generic, by a density argument we would have

$$\operatorname{ran}(p \restriction \delta) = M \cap \mu \notin V,$$

which is absurd since $p \in V$. Therefore \mathbb{P} is not proper in W.

<u>Question</u> For any two models $V \subsetneq W$ of ZFC with the same ordinals, can one find \mathbb{P} totally proper in V but not in W?

References I

[1] Asaf Karagila.

Open problems.

Blog entry, http://karagila.org/problems.html, 2018.

[2] Yasuo Yoshinobu.

Properness under closed forcing.

In Advances in Mathematical Logic / Dedicated to the Memory of Professor Gaisi Takeuti, SAML 2018, Kobe, Japan, September 2018, Springer Proceedings in Mathematics and Statistics, to appear.

[3] Asaf Karagila.

Preserving properness.

Blog enrty, http://karagila.org/2018/preserving-properness/, 2018.

[4] Saharon Shelah.

Proper and Improper Forcing.

Perspectives in Mathematical Logic. Springer-Verlag, 1998.

[5] Martin Goldstern.

Answer of MathOverflow question 193522. MathOverflow, https://mathoverflow.net/a/193522, 2015.

References II

[6] William Mitchell.

Aronszajn trees and the independence of the transfer property.

Annals of Mathematical Logic, 5:21–46, 1972.

[7] James E. Baumgartner.

Applications of the Proper Forcing Axiom.

In K. Kunen and J.E. Vaughan, editors, *Handbook of set-theoretic topology*, pages 913–959. North-Holland, 1984.

[8] Moti Gitik.

Nonsplitting subset of $P_{\kappa}(\kappa^+)$.

Journal of Symbolic Logic, 50(4):881-894, 1985.